13,627 research outputs found

    Graph-Based Classification of Omnidirectional Images

    Get PDF
    Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem

    Vision-Based Navigation III: Pose and Motion from Omnidirectional Optical Flow and a Digital Terrain Map

    Full text link
    An algorithm for pose and motion estimation using corresponding features in omnidirectional images and a digital terrain map is proposed. In previous paper, such algorithm for regular camera was considered. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables recovering the absolute position and orientation of the camera. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. In this paper, these constraints are extended to handle non-central projection, as is the case with many omnidirectional systems. The utilization of omnidirectional data is shown to improve the robustness and accuracy of the navigation algorithm. The feasibility of this algorithm is established through lab experimentation with two kinds of omnidirectional acquisition systems. The first one is polydioptric cameras while the second is catadioptric camera.Comment: 6 pages, 9 figure

    OMNIDIRECTIONAL IMAGE PROCESSING USING GEODESIC METRIC

    Get PDF
    International audienceDue to distorsions of catadioptric sensors, omnidirectional images can not be treated as classical images. If the equivalence between central catadioptric images and spherical images is now well known and used, spherical analysis often leads to complex methods particularly tricky to employ. In this paper, we propose to derive omnidirectional image treatments by using geodesic metric. We demonstrate that this approach allows to adapt efficiently classical image processing to omnidirectional images

    Scale Invariant Feature Transform on the Sphere: Theory and Applications

    Get PDF
    A SIFT algorithm in spherical coordinates for omnidirectional images is proposed. This algorithm can generate two types of local descriptors, Local Spherical Descriptors and Local Planar Descriptors. With the first ones, point matching between two omnidirectional images can be performed, and with the second ones, the same matching process can be done but between omnidirectional and planar images. Furthermore, a planar to spherical mapping is introduced and an algorithm for its estimation is given. This mapping allows to extract objects from an omnidirectional image given their SIFT descriptors in a planar image. Several experiments, confirming the promising and accurate performance of the system, are conducte

    Segmentation-Based Bounding Box Generation for Omnidirectional Pedestrian Detection

    Full text link
    We propose a segmentation-based bounding box generation method for omnidirectional pedestrian detection that enables detectors to tightly fit bounding boxes to pedestrians without omnidirectional images for training. Due to the wide angle of view, omnidirectional cameras are more cost-effective than standard cameras and hence suitable for large-scale monitoring. The problem of using omnidirectional cameras for pedestrian detection is that the performance of standard pedestrian detectors is likely to be substantially degraded because pedestrians' appearance in omnidirectional images may be rotated to any angle. Existing methods mitigate this issue by transforming images during inference. However, the transformation substantially degrades the detection accuracy and speed. A recently proposed method obviates the transformation by training detectors with omnidirectional images, which instead incurs huge annotation costs. To obviate both the transformation and annotation works, we leverage an existing large-scale object detection dataset. We train a detector with rotated images and tightly fitted bounding box annotations generated from the segmentation annotations in the dataset, resulting in detecting pedestrians in omnidirectional images with tightly fitted bounding boxes. We also develop pseudo-fisheye distortion augmentation, which further enhances the performance. Extensive analysis shows that our detector successfully fits bounding boxes to pedestrians and demonstrates substantial performance improvement.Comment: Pre-print submitted to Journal of Multimedia Tools and Application

    Face tracking using a hyperbolic catadioptric omnidirectional system

    Get PDF
    In the first part of this paper, we present a brief review on catadioptric omnidirectional systems. The special case of the hyperbolic omnidirectional system is analysed in depth. The literature shows that a hyperboloidal mirror has two clear advantages over alternative geometries. Firstly, a hyperboloidal mirror has a single projection centre [1]. Secondly, the image resolution is uniformly distributed along the mirror’s radius [2]. In the second part of this paper we show empirical results for the detection and tracking of faces from the omnidirectional images using Viola-Jones method. Both panoramic and perspective projections, extracted from the omnidirectional image, were used for that purpose. The omnidirectional image size was 480x480 pixels, in greyscale. The tracking method used regions of interest (ROIs) set as the result of the detections of faces from a panoramic projection of the image. In order to avoid losing or duplicating detections, the panoramic projection was extended horizontally. Duplications were eliminated based on the ROIs established by previous detections. After a confirmed detection, faces were tracked from perspective projections (which are called virtual cameras), each one associated with a particular face. The zoom, pan and tilt of each virtual camera was determined by the ROIs previously computed on the panoramic image. The results show that, when using a careful combination of the two projections, good frame rates can be achieved in the task of tracking faces reliably

    Stereoscopic Omnidirectional Image Quality Assessment Based on Predictive Coding Theory

    Full text link
    Objective quality assessment of stereoscopic omnidirectional images is a challenging problem since it is influenced by multiple aspects such as projection deformation, field of view (FoV) range, binocular vision, visual comfort, etc. Existing studies show that classic 2D or 3D image quality assessment (IQA) metrics are not able to perform well for stereoscopic omnidirectional images. However, very few research works have focused on evaluating the perceptual visual quality of omnidirectional images, especially for stereoscopic omnidirectional images. In this paper, based on the predictive coding theory of the human vision system (HVS), we propose a stereoscopic omnidirectional image quality evaluator (SOIQE) to cope with the characteristics of 3D 360-degree images. Two modules are involved in SOIQE: predictive coding theory based binocular rivalry module and multi-view fusion module. In the binocular rivalry module, we introduce predictive coding theory to simulate the competition between high-level patterns and calculate the similarity and rivalry dominance to obtain the quality scores of viewport images. Moreover, we develop the multi-view fusion module to aggregate the quality scores of viewport images with the help of both content weight and location weight. The proposed SOIQE is a parametric model without necessary of regression learning, which ensures its interpretability and generalization performance. Experimental results on our published stereoscopic omnidirectional image quality assessment database (SOLID) demonstrate that our proposed SOIQE method outperforms state-of-the-art metrics. Furthermore, we also verify the effectiveness of each proposed module on both public stereoscopic image datasets and panoramic image datasets
    • …
    corecore